Pemeriksaan Karkas Unggas Dengan Pencitraan Hiperspektral

Keamanan dan kualitas pangan merupakan hal yang paling penting dalam industri pertanian dan pengolahan pangan di era modern. Mengingat unggas merupakan sumber protein yang banyak dikonsumsi di seluruh dunia, maka penting untuk menerapkan proses pemeriksaan yang ketat untuk melindungi konsumen dari potensi bahaya kesehatan. Metode konvensional pemeriksaan karkas unggas biasanya melibatkan penilaian visual atau pengujian laboratorium. Meskipun metode pemeriksaan karkas unggas ini cukup efektif, metode ini mempunyai keterbatasan. Misalnya, inspeksi visual tidak memiliki kemampuan untuk mendeteksi cacat halus atau kontaminan, sedangkan pengujian sampel melalui prosedur laboratorium manual bersifat merusak dan memakan waktu. Oleh karena itu, diperlukan pendekatan yang lebih maju dan komprehensif untuk menjamin keselamatan konsumen dan meningkatkannyakualitas produk , dan yang terdepan adalah hyperspectral imaging (HSI) .

Teknologi Pencitraan Hiperspektral

Pencitraan hiperspektral adalah salah satu teknologi terbaru yang dengan cepat mendapatkan popularitas di industri makanan dan pertanian . Pencitraan hiperspektral menggabungkan kemampuan pencitraan dan spektroskopi, menangkap informasi spektral dan spasial secara bersamaan, memungkinkan deteksi fitur eksternal dan sifat kimia atau biologis dalam makanan dan produk pertanian secara non-destruktif.

Proses pencitraan hiperspektral pada pemeriksaan karkas unggas melibatkan beberapa langkah penting. Pertama, kamera hiperspektral digunakan untuk menangkap data spektral terperinci untuk setiap piksel, sehingga membentuk data atau gambar hiperspektral. Data hiperspektral yang dikumpulkan kemudian menjalani pra-pemrosesan untuk memperbaiki distorsi, kebisingan, dll., yang mungkin mempengaruhi keakuratan analisis. Data yang diproses kemudian dianalisis, mengekstraksi fitur atau properti relevan yang menunjukkan kualitas dan keamanan karkas unggas, seperti kontaminan, memar, dll. Selanjutnya, teknik analisis data, termasuk algoritma pembelajaran mesin, digunakan pada data hiperspektral. Algoritme ini dilatih pada kumpulan data menggunakan karkas unggas normal dan cacat, sehingga memungkinkan mereka membedakan berbagai jenis cacat dan kontaminan pada karkas unggas. Sistem klasifikasi ini memberdayakan pengambilan keputusan secara real-time mengenai kualitas dan keamanan setiap karkas unggas berdasarkan tanda hiperspektralnya yang unik.

Studi penelitian terbaru menunjukkan potensi luar biasa dari pencitraan hiperspektral dalam pemeriksaan karkas unggas. Misalnya, para ilmuwan di Stasiun Percobaan Pertanian Arkansas mampu mendeteksi cacat dada ayam yang dikenal sebagai “dada kayu” menggunakan pencitraan hiperspektral. Sebuah studi oleh Chao dkk. (2008) menunjukkan efektivitas pencitraan hiperspektral dalam memeriksa karkas ayam yang baru dipotong pada jalur pemrosesan berkecepatan tinggi. Para peneliti melaporkan tingkat akurasi yang mengesankan yaitu lebih dari 99% dan 96% dalam mengidentifikasi ayam yang sehat dan tidak sehat.

Kamera Hiperspektral Spesifik untuk Pemeriksaan Karkas Unggas

Specim menawarkan serangkaian kamera hiperspektral pemindaian garis (pushbroom) , mulai dari model portabel hingga model industri canggih, yang banyak digunakan dalam berbagai aplikasi pemeriksaan kualitas dan keamanan makanan, termasuk  buah-buahan/sayuran ,  kacang-kacangan , dll.

Di antara jajaran kamera hiperspektralnya, seri Specim FX menonjol dengan kamera hiperspektral VNIR FX10 dan kamera hiperspektral NIR FX17. Kamera ini ideal untuk memeriksa karkas unggas, khususnya pada jalur pemrosesan berkecepatan tinggi. Kamera hiperspektral FX10 dan kamera hiperspektral FX17 dapat dengan mudah diintegrasikan ke dalam sistem visi mesin atau sistem penyortiran optik yang ada, sehingga memastikan pengoperasian yang lancar. Dengan frame rate yang tinggi , kamera hiperspektral FX10 dan FX17 mampu memenuhi tuntutan pemrosesan atau penyortiran berkecepatan tinggi.

Mendeteksi dan mengklasifikasikan daging unggas dengan kamera hiperspektral Specim FX17.
Gambar milik SPECIM, SPECTRAL IMAGING LTD

Lihat video yang menampilkan kamera hiperspektral FX10 dan FX17 untuk mempelajari lebih lanjut tentang kemampuannya.

Untuk informasi komprehensif tentang kamera dan solusi hiperspektral Specim, atau jika Anda memerlukan bantuan untuk menemukan solusi hiperspektral yang cocok untuk aplikasi makanan Anda, hubungi kami untuk konsultasi gratis sekarang.

Mengukur Tampilan Rentang Dinamis Tinggi (HDR)

Salah satu kesalahpahaman umum adalah menyamakan resolusi dengan HDR. Resolusi adalah istilah yang digunakan untuk menggambarkan jumlah total piksel yang membentuk gambar atau tampilan. Ini dinyatakan sebagai jumlah total piksel secara horizontal dan vertikal (misalnya, “3840×2160 piksel” untuk 4K Ultra HD). Resolusi secara langsung memengaruhi ketajaman dan kejernihan gambar, di mana semakin tinggi resolusi yang dimiliki layar, semakin banyak piksel yang dimilikinya, dan semakin halus detail yang dapat direproduksi. Di sisi lain, HDR berfokus pada rentang dinamis pencahayaan (kecerahan) dan spektrum warna yang dapat direproduksi oleh layar.

Teknologi tampilan terus berkembang, membentuk kembali pengalaman visual kita dengan cara yang luar biasa, dan di antara inovasi tersebut adalah High Dynamic Range (HDR). Pada intinya, HDR memperluas jangkauan dinamis kecerahan dan reproduksi warna pada layar tampilan, menggambarkan warna yang lebih hidup, hitam pekat, dan sorotan yang lebih cerah, membawa visual lebih dekat dengan cara kita memandang dunia dengan mata kita sendiri.

Mengevaluasi Kinerja Tampilan HDR

Untuk benar-benar memahami kemampuan tampilan HDR, evaluasi yang akurat sangat penting. Berbagai pedoman dan spesifikasi untuk mengevaluasi performa layar Rentang Dinamis Tinggi (HDR) telah ditetapkan oleh asosiasi seperti VESA , Ultra HD Alliance (UHDA) , dll., memastikan layar mereproduksi rentang dinamis pencahayaan dan warna yang dibutuhkan konten HDR. Panduan dan spesifikasi untuk mengevaluasi tampilan HDR mencakup berbagai parameter. Beberapa parameter umum meliputi luminans putih puncak, luminans hitam, akurasi fungsi transfer elektro-optik (EOTF), cakupan gamut warna , dll.

  • Pencahayaan putih puncak mengacu pada kecerahan maksimum yang dapat dicapai oleh layar. Biasanya dinyatakan dalam nits (cd/m²), luminans puncak yang lebih tinggi meningkatkan kemampuan layar untuk menghasilkan sorotan yang intens dan warna yang hidup.
  • Pencahayaan hitam mewakili tingkat pencahayaan terendah yang dapat dicapai oleh layar. Dalam tampilan HDR, mempertahankan tingkat hitam yang dalam dan akurat sangat penting untuk memastikan bahwa bayangan dan area yang lebih gelap pada gambar mempertahankan detail dan tekstur. Kemampuan untuk mereproduksi warna hitam asli menambah kedalaman dan kontras pada visual.
  • ETOF adalah fungsi matematis yang menentukan bagaimana tampilan mengubah sinyal digital yang dikodekan dalam gambar dan video yang Anda tonton ke tingkat pencahayaan yang sebenarnya. Keakuratan dalam EOTF memastikan bahwa adegan disajikan pada tampilan seperti yang dimaksudkan oleh pembuat konten, dengan sorotan, bayangan, dan gradasi kecerahan yang akurat.
  • Gamut warna mengacu pada cakupan tampilan ruang warna seperti Rec. 2020 atau DCI-P3. Mengevaluasi cakupan gamut warna memastikan tampilan dapat secara akurat mereproduksi spektrum penuh warna, dari merah terdalam hingga hijau dan biru paling jelas.

Mengukur beragam parameter secara akurat yang menentukan performa tampilan HDR mengharuskan kebutuhan akan instrumen pengukuran tampilan khusus seperti spektroradiometer, penganalisa warna tampilan, dll.

Tampilkan Instrumen Metrologi untuk Evaluasi Tampilan HDR

Konica Minolta Sensing menawarkan rangkaian instrumen dan solusi pengukuran tampilan yang komprehensif untuk menguji dan memeriksa berbagai jenis tampilan , dari LCD hingga OLED , dll. Khususnya, Spektroradiometer Konica Minolta CS-3000HDR adalah instrumen yang sangat akurat yang menyediakan pengukuran dalam dinamika lebar rentang, dari pencahayaan rendah 0,0001cd/m2 (sudut pengukuran 1°) hingga 10.000.000 cd/m2 (sudut pengukuran 0,1°), menawarkan evaluasi kinerja tampilan HDR yang akurat dan andal, termasuk yang menggunakan LED mikro .

Tertarik untuk mengetahui lebih lanjut tentang Spektroradiometer CS-3000HDR? Atau mungkin Anda memerlukan bantuan untuk menemukan instrumen metrologi tampilan atau sistem pencitraan yang tepat untuk aplikasi pengujian dan pemeriksaan tampilan Anda? Jangan ragu untuk menghubungi kami untuk mengatur demo gratis Spectroradiometer CS-3000HDR atau konsultasi dengan spesialis kami.

Bagaimana Pencitraan Hiperspektral Digunakan dalam Pertanian?

Selama berabad-abad, peneliti dan produsen pertanian mengandalkan metode tradisional, seperti inspeksi visual, dll., untuk memantau dan mengelola tanaman mereka. Meskipun metode ini mungkin efektif sampai tingkat tertentu, metode ini sering kali kurang presisi dan informasi real-time yang disediakan oleh teknologi modern seperti hyperspectral imaging (HSI) . Dalam beberapa tahun terakhir, pencitraan hiperspektral telah menjadi alat yang sangat berharga dalam industri pertanian dan mengubah cara kita memantau dan mengelola tanaman.

Cara Kerja Pencitraan Hiperspektral

Contoh ilustrasi pencitraan hiperspektral di bidang pertanian

Pencitraan hiperspektral menangkap gambar objek atau pemandangan di berbagai bagian panjang gelombang spektrum elektromagnetik. Tidak seperti pencitraan tradisional, yang menangkap gambar hanya menggunakan tiga saluran warna (merah, hijau, dan biru), pencitraan hiperspektral menggunakan banyak saluran spektral yang sempit dan bersebelahan, biasanya berkisar dari ultraviolet hingga inframerah.

Ketika suatu objek diterangi dengan cahaya, ia memantulkan atau menyerap panjang gelombang cahaya yang berbeda berdasarkan sifat materialnya. Misalnya, apel merah memantulkan lebih banyak cahaya merah daripada cahaya biru. Pencitraan hiperspektral memanfaatkan fenomena ini untuk membedakan antara berbagai bahan dan warna. Dengan menganalisis jumlah cahaya yang dipantulkan atau diserap oleh suatu objek di setiap saluran spektral, pencitraan hiperspektral dapat membuat tanda spektral atau sidik jari yang unik untuk objek tersebut.

Tanda spektral suatu objek berisi informasi tentang komposisi, sifat kimia, warna, dll. Bahan dan warna yang berbeda memiliki tanda spektral unik yang dapat dideteksi dan dianalisis menggunakan pencitraan hiperspektral. Misalnya, apel merah dan apel hijau akan memiliki tanda spektral yang berbeda karena warnanya yang berbeda. Demikian pula, tanaman yang sehat dan yang terinfeksi penyakit akan memiliki tanda spektral yang berbeda karena karakteristik fisiologisnya.

Aplikasi Hyperspectral dalam Pertanian

Dengan kemampuannya untuk memberikan informasi rinci tentang tumbuhan atau vegetasi dengan cara yang tidak merusak, pencitraan hiperspektral dapat digunakan untuk berbagai aplikasi pertanian. Di bawah ini adalah beberapa penggunaan umum dari pencitraan hyperspectral di bidang pertanian.

  • Penilaian dan pemantauan kesehatan tanaman . Salah satu kegunaan utama pencitraan hiperspektral dalam pertanian adalah untuk memantau kesehatan tanaman dengan mendeteksi stres yang disebabkan oleh faktor-faktor seperti penyakit , defisiensi nutrisi, hama, dll. Dengan mendeteksi stres sejak dini, produsen pertanian dapat mengambil tindakan untuk menguranginya sebelum masalah tersebut muncul menjadi luas dan secara signifikan mempengaruhi hasil panen.
  • penilaian kualitas . Aplikasi pencitraan hyperspectral umum lainnya di bidang pertanian adalah penilaian kualitas tanaman yang dipanen. Dengan menganalisis tanda spektral tanaman, produsen pertanian dapat mengidentifikasi masalah seperti memar , pembusukan, kerusakan akibat serangga, dll.
  • Penilaian dan pemantauan tanah . Pencitraan hiperspektral juga dapat digunakan untuk mendapatkan wawasan berharga tentang komposisi dan kesehatan tanah. Misalnya, dengan menggunakan data yang diperoleh dari sensor atau kamera hiperspektral, produsen pertanian dapat memprediksi dan menilai sifat tanah seperti kelembapan tanah, karbon organik tanah , dan kandungan nitrogen – yang semuanya penting untuk pertumbuhan tanaman dan hasil panen.

Kamera Spesifik Hyperspectral untuk Pertanian

Kamera hiperspektral portabel Specim IQ (kiri) dan kamera hiperspektral Specim FX10 (kanan).
Gambar milik SPECIM, SPECTRAL IMAGING LTD.

Specim, bagian dari Konica Minolta Sensing, menawarkan berbagai pilihan kamera hiperspektral pushbroom (pemindaian garis) dan solusi yang dapat diterapkan pada berbagai aplikasi pertanian. Pilihan mereka mencakup kamera hiperspektral portabel yang cocok untuk penggunaan laboratorium atau di tempat hingga kamera hiperspektral tingkat industri , yang dapat dengan mudah diintegrasikan ke dalam sistem visi mesin yang ada, hingga sistem hiperspektral udara .

Penginderaan Konica Minolta memiliki banyak pilihan solusi instrumental untuk peneliti dan produsen pertanian yang ingin memastikan kualitas dalam penelitian, produksi, atau kontrol mereka. Selain kamera hiperspektral, rangkaian penawaran instrumental kami meliputi instrumen pengukuran warna yang dapat digunakan untuk mengevaluasi dan mengelola kualitas dan kematangan tanaman serta pengukur cahaya yang dapat mengukur keluaran sumber cahaya dalam pertanian dalam ruangan. Kunjungi koleksi lengkap solusi instrumental kami yang dirancang khusus untuk industri pertanian di sini .

Ingin mempelajari lebih lanjut tentang kamera dan solusi hyperspectral Specim? Atau butuh bantuan menemukan solusi instrumental yang tepat untuk kebutuhan aplikasi pertanian Anda? Tim ahli kami siap membantu Anda. Minta konsultasi gratis Anda dengan kami sekarang.

Menampilkan Solusi Metrologi untuk Inspeksi Lini Produksi Berkecepatan Tinggi

Teknologi tampilan adalah komponen penting dari dunia yang digerakkan oleh digital saat ini, menyediakan tautan penting antara pengguna dan perangkat serta produk mereka seperti smartphone , panel layar sentuh di otomotif , dll. Layar harus melalui evaluasi dan inspeksi yang ketat, mulai dari R&D hingga kontrol kualitas, hingga memastikan mereka konsisten dengan tujuan desain dan memenuhi standar yang diperlukan untuk kinerja dan keandalan. Evaluasi dan inspeksi yang akurat dan efisien dapat dicapai dengan tampilan metrologi , pendekatan ilmiah yang memberikan indikator kinerja tampilan objektif melalui data pengukuran. Ini melibatkan penggunaan instrumen atau sistem metrologi untuk mengukur berbagai aspek performa tampilan, seperti kecerahan, warna, gamutkontras , keseragaman , cacat, sudut pandang , dll.

Menampilkan Instrumen Metrologi

Tampilkan karakterisasi dan evaluasi dengan spektroradiometer.

Beragam instrumen metrologi layar tersedia saat ini untuk mendukung produsen layar dalam mengkarakterisasi dan memeriksa kinerja layar mereka. Instrumen metrologi tampilan konvensional seperti spot meter dan spektroradiometer sangat akurat dalam menangkap nilai luminans dan kromatisitas. Namun, instrumen ini lebih cocok dalam fase R&D (misalnya, menentukan spesifikasi kinerja untuk tampilan) daripada pemeriksaan kontrol kualitas kecepatan tinggi, karena hanya dapat mengukur satu titik (posisi) pada satu waktu. Selain itu, instrumen ini umumnya tidak memiliki kemampuan integrasi untuk terhubung dengan sistem otomatis.

Sistem Pengukuran Berbasis Gambar

Pendekatan alternatif untuk inspeksi tampilan lini produksi adalah penggunaan sistem pencitraan. Mereka dapat menangkap dan mengevaluasi seluruh area panel display, memenuhi tuntutan kecepatan dan throughput volume tinggi untuk memeriksa display di lini produksi. Ada beberapa sistem pencitraan yang tersedia, dan kemampuannya bergantung pada jenis kamera yang digunakan di dalam sistem. Sistem pencitraan yang menggunakan kamera visi mesin dapat mendeteksi cacat tampilan dengan kecepatan tinggi namun memiliki keterbatasan dalam aspek metrologi tampilan. Sebagian besar kamera visi mesin tidak memiliki resolusi yang diperlukan untuk mengevaluasi tampilan padat pikseldan mengandalkan kontras (gambar hitam putih) untuk mendeteksi cacat pada tampilan. Untuk kamera visi mesin yang mampu melakukan pengukuran kromatisitas melalui filter warna di bagian depan sensor (misalnya, filter Pola Bayer, dll.), mereka tidak menyediakan pengukuran warna absolut (CIE). Kalibrasi khusus tambahan juga diperlukan untuk menyelaraskan respons spektralnya dengan fungsi pencocokan warna CIE untuk mereplikasi persepsi warna dan cahaya mata kita.

Tampilan Metrologi untuk Produksi

Radiant Vision Systems ProMetric® I imaging colorimeter , solusi metrologi yang menggabungkan pengukuran ilmiah dengan pencitraan, mampu menangkap nilai yang cocok dengan CIE untuk luminance dan chromaticity sambil memberikan deteksi cacat seperti mura , dead pixel, dll. Dengan tristimulus bawaan filter warna, respons spektral colorimeter pencitraan ProMetric® I sangat cocok dengan fungsi pencocokan warna CIE, memberikan akurasi warna seperti yang dirasakan oleh pengamat manusia. Dilengkapi dengan sensor gambar tingkat ilmiah yang menawarkan resolusi hingga 61 megapiksel (MP), kolorimeter pencitraan ProMetric® I menawarkan kemampuan pencitraan beresolusi tinggi yang dapat menerapkan lebih banyak piksel sensorper piksel tampilan, meningkatkan jumlah informasi yang ditangkap. Kolorimeter pencitraan ProMetric® I didukung oleh berbagai lensa kamera dan perangkat lunak seperti TrueTest™ yang membentuk kombinasi sempurna antara metrologi ilmiah dan efisiensi visi mesin untuk pengujian tampilan. Lihat webinar sesuai permintaan ini untuk mempelajari lebih lanjut tentang solusi metrologi tampilan Radiant Vision Systems untuk produksi tampilan inspeksi visual otomatis.

Karakterisasi dan inspeksi tampilan di lab dan lini produksi dengan kolorimeter pencitraan ProMetric®

Butuh bantuan untuk menemukan instrumen atau solusi yang tepat untuk mengkarakterisasi atau memeriksa performa tampilan Anda? Hubungi spesialis kami untuk konsultasi gratis sekarang.

Meningkatkan Pemeriksaan Kualitas Pangan dengan Pencitraan Hiperspektral

Salah satu prioritas utama produsen makanan adalah memastikan kualitas produk mereka. Ini melibatkan pemeriksaan makanan pada berbagai tahap produksi untuk memastikan mereka bebas dari kontaminasi dan pemalsuan atau sesuai dengan undang-undang, peraturan, kode praktik, dan standar internasional yang relevan. Ada beberapa metode berbeda yang dapat digunakan untuk memeriksa makanan, termasuk pemeriksaan visual, analisis laboratorium, dan visi mesin.

Inspeksi visual adalah metode konvensional dan paling dasar dalam pemeriksaan kualitas makanan. Inspektur menggunakan isyarat visual seperti warna , tekstur, dan penampilan untuk menilai kualitas dan keamanan makanan. Analisis laboratorium sering digunakan bersamaan dengan inspeksi visual untuk mendukung atau mengkonfirmasi evaluasi. Tes laboratorium umum meliputi pengujian mikroba, yang digunakan untuk mendeteksi keberadaan mikroorganisme berbahaya dalam produk makanan, atau analisis kimia untuk membantu menentukan keberadaan bahan kimia berbahaya dalam produk makanan. Namun, metode seperti itu membosankan, melelahkan, memakan waktu, dan tidak memiliki objektivitas dan kecepatan untuk produksi makanan bervolume tinggi dan berkecepatan tinggi saat ini.

Visi Mesin Untuk Pemeriksaan Makanan

Dengan hasil produksi yang meningkat dan toleransi kualitas yang diperketat, banyak yang beralih ke sistem visi mesin untuk pemeriksaan kualitas makanan. Sistem visi mesin konvensional dikonfigurasi menggunakan kamera atau sensor RGB (merah, hijau, dan biru) untuk mengkarakterisasi makanan berdasarkan warnanya. Namun, kemampuan identifikasinya terbatas karena hanya menggunakan tiga pita warna. 

Kemajuan yang cukup besar telah dibuat dalam beberapa tahun terakhir dalam pengembangan teknologi visi mesin baru untuk pemeriksaan kualitas makanan, dengan pencitraan hiperspektral (HSI) sebagai yang terdepan. Tidak seperti kamera RGB yang hanya menggunakan tiga band yang terlihat, kamera hyperspectralmemanfaatkan ratusan ribu pita yang berdekatan di seluruh spektrum, tidak terbatas hanya pada bagian yang terlihat. Oleh karena itu, ini dapat memberikan banyak informasi terperinci yang dapat digunakan untuk mengidentifikasi dan menyortir makanan berdasarkan komposisi kimianya daripada hanya warna. Setiap bahan memiliki komposisi yang unik dan bereaksi berbeda pada panjang gelombang yang berbeda, yaitu jumlah cahaya yang dipantulkan, dipancarkan, atau ditransmisikan. Kamera hiperspektral menangkap reaksi ini dan menggunakannya sebagai penanda spektral, seperti sidik jari kita, untuk identifikasi.

Membedakan kenari dari cangkangnya dengan pencitraan hiperspektral.

Gambar milik SPECIM, SPECTRAL IMAGING LTD.

Kamera Pencitraan Hiperspektral

Ada berbagai jenis kamera hyperspectral , yaitu pushbroom (line scan), whiskbroom (point scan), spectral scanning (area scan), dll., dan masing-masing memiliki metode tersendiri untuk menangkap data hyperspectral. Kamera hiperspektral pushbroom bekerja dengan menyapu target, dari satu baris piksel ke baris berikutnya, untuk membangun kubus data hiperspektral.  Kamera hiperspektral Whiskbroom menangkap satu piksel tunggal dalam satu waktu. Mereka membangun kubus data hiperspektral melalui pemindaian raster target. Kamera hiperspektral berdasarkan pemindaian spektral membentuk kubus data hiperspektral mereka dengan mengukur satu pita panjang gelombang pada satu waktu. Karena makanan biasanya bergerak di sepanjang jalur produksi atau pemrosesan, kamera hiperspektral pushbroom secara alami cocok untuk memeriksa makanan bergerak.

Contoh ilustrasi tentang bagaimana kamera hiperspektral pushbroom (kiri), whiskbroom (tengah), dan pemindaian spektral (kanan) menangkap data hiperspektral.

Spesimen Kamera Hyperspectral

Specim, pelopor dan pemimpin dalam teknologi HSI, menawarkan banyak kamera hiperspektral pushbroom yang mencakup wilayah spektral berbeda dari VNIR (inframerah tampak dan dekat) hingga LWIR (inframerah gelombang panjang). Ini termasuk kamera hiperspektral genggam , kamera hiperspektral industri, sistem HSI penginderaan jauh dan udara, dll. Dalam hal pemeriksaan kualitas makanan, seri Specim FX, terutama kamera hiperspektral FX10 dan FX17, menawarkan frekuensi gambar tinggi yang dapat menandingi kecepatan pemrosesan makanan atau lini produksi beberapa meter per detik, memungkinkan pemeriksaan akurat dalam produksi makanan berkecepatan tinggi saat ini. Dengan 224 band spektral dan resolusi spasial yang tinggi, FX10, yang mencakup wilayah spektral VNIR, dan FX17, di wilayah spektral NIR (inframerah dekat), dapat mengidentifikasi makanan secara andal berdasarkan kandungan fisik, biologis, dan kimia, memungkinkan inspeksi yang mudah dan penilaian makanan, termasuk deteksi benda asing dan kontaminan.

Kamera hiperspektral seri Specim FX digunakan di banyak aplikasi pemeriksaan makanan seperti daging , kacang- kacangan , buah/sayuran , dll. Lihat video ini untuk mengetahui lebih lanjut tentang kamera hiperspektral seri Specim FX.

Mengidentifikasi cacat yang berbeda dari sampel daging dengan kamera hyperspectral Specim FX17.

Gambar milik SPECIM, SPECTRAL IMAGING LTD.

Butuh bantuan untuk menemukan kamera dan solusi hiperspektral yang tepat untuk aplikasi makanan Anda? Hubungi spesialis kami untuk konsultasi gratis sekarang.