Panduan Untuk Pemilihan Kamera Hyperspectral

Pencitraan hiperspektral (HSI) , awalnya digunakan untuk eksplorasi ruang angkasa dan pengamatan bumi, menjadi semakin populer di berbagai bidang industri dan ilmiah. HSI dapat menangkap informasi spektral dan spasial penuh dari suatu target secara bersamaan, kombinasi dari pencitraan digital dan pengukuran spektral. Dengan kemampuannya, HSI menawarkan banyak kemungkinan baru dan dengan cepat digunakan dalam berbagai penelitian dan aplikasi industri, termasuk kontrol kualitas makanan , studi pertanian dan vegetasi , plastik daur ulang dan pemilahan limbah , jaminan kualitas farmasi , diagnostik tumor kulit, dll.

HSI telah terbukti menjadi solusi yang layak untuk banyak aplikasi, dan salah satu blok bangunan sistem HSI yang efektif adalah memiliki kamera hiperspektral yang tepat yang akan bekerja paling baik untuk tugas pengukuran Anda. Ada beberapa jenis kamera hyperspectral seperti pushbroom, tunable filter, dll. Mereka dapat dibedakan dari cara mereka memperoleh dan menghasilkan data/gambar hyperspectral .

Whiskbroom (Pemindaian Titik)

Kamera hyperspectral berbasis Whiskbroom menangkap satu piksel dalam satu waktu. Kubus data hiperspektral biasanya dibangun melalui pemindaian raster di seluruh sampel. Meskipun mampu mencapai resolusi spektral tinggi, ia memiliki kecepatan akuisisi gambar yang lambat.

Filter Merdu

Kamera hyperspectral filter merdu menangkap informasi spasial dari satu pita panjang gelombang spektral pada suatu waktu. Kubus data hiperspektral dihasilkan melalui pemindaian semua pita panjang gelombang spektral. Ini cepat dalam akuisisi gambar tetapi sering mengalami kesulitan mendapatkan spektrum yang terdaftar bersama, menghasilkan pemrosesan data yang rumit, tanda tangan spektral yang tidak dapat diandalkan, dll.

Sapu Dorong (Pemindaian Garis)

Kamera hyperspectral berbasis pushbroom menawarkan akuisisi gambar cepat dan resolusi spektral tinggi dan cocok untuk aplikasi online seperti inspeksi makanan, dll. Kamera menangkap satu baris piksel setiap kali dan membangun kubus data hiperspektral dengan memindai garis melintasi sampel . Karena semua pita spektral dipindai secara bersamaan dari posisi yang sama, mereka tidak akan kesulitan mencapai spektrum yang terdaftar bersama.

Selain memilih kamera hiperspektral yang tepat, faktor-faktor seperti jangkauan spektral, iluminasi , efisiensi pengumpulan cahaya, dll., juga harus dipertimbangkan sebelum menyiapkan sistem HSI. Lihat panduan ini untuk mempelajari lebih lanjut.

Specim, pelopor dan pemimpin global dalam teknologi HSI, memiliki banyak pilihan kamera hiperspektral berbasis pushbroom, seperti Specim IQ , dll., yang mencakup rentang panjang gelombang spektral dari inframerah panjang gelombang tampak hingga inframerah panjang gelombang panjang (LWIR). Tonton video ini untuk mempelajari lebih lanjut tentang cara kerja kamera hiperspektral berbasis sapu dorong Specim.

Ingin mempelajari lebih lanjut tentang HSI atau butuh bantuan dalam mengimplementasikan sistem HSI untuk aplikasi Anda? Hubungi kami untuk konsultasi gratis dengan ahli kami sekarang.

Panduan Pengukuran Pencitraan Hiperspektral

Pencitraan hiperspektral (HSI) adalah teknik non-invasif yang memanfaatkan spektroskopi dan pencitraan digital. Ini membagi spektrum menjadi ratusan ribu pita, jauh lebih luas daripada yang bisa dilihat mata manusia kita (tiga pita merah, hijau, dan biru). Gambar dibuat untuk setiap pita dan dikodekan dengan tingkat skala abu-abu untuk membentuk kubus data hiperspektral untuk pemrosesan dan analisis. Kemampuan spektrum penuh HSI memungkinkan identifikasi dan pemisahan material yang akurat melalui perbedaan sifat fisik, kimia, dan biologisnya.

HSI semakin banyak digunakan di berbagai industri dan aplikasi penelitian. Misalnya, mereka dapat digunakan untuk mempelajari dan memeriksa makanan dan produk farmasi , memilah sampah dan plastik daur ulang , memetakan pertumbuhan vegetasi, kesehatan, dan status gizi , mengklasifikasikan lesi kulit , dll. Langkah pertama menuju solusi HSI yang efektif adalah memiliki kamera dan pengaturan hiperspektral kanan . Berikut adalah beberapa poin yang perlu dipertimbangkan sebelum menyiapkan solusi HSI.

Rentang panjang gelombang

Bahan dan senyawa yang berbeda memiliki fitur spektral (tanda tangan) dalam panjang gelombang yang berbeda. Pemilihan kamera HSI harus didasarkan pada rentang panjang gelombang yang dapat menutupi dan mengidentifikasi fitur spektral target Anda. Seperti yang diilustrasikan pada gambar 1, mineral kuarsa menunjukkan puncak dan bentuk fitur spektral setelah 8000 nm sehingga kamera HSI dengan panjang gelombang LWIR (Long-Wave Infrared) akan lebih sesuai.

Gambar 1 – Panjang Gelombang Kuarsa

Tonton video ini untuk mengetahui lebih lanjut tentang cara memilih kamera HSI yang tepat untuk aplikasi Anda.

Penerangan

Cahaya merupakan elemen penting dalam HSI karena mempengaruhi kualitas gambar hiperspektral. Hal pertama yang harus diperhatikan adalah kekuatan iluminasi. Daya iluminasi yang dibutuhkan tergantung pada jarak antara sumber cahaya dan target, geometri berkas iluminasi, dan waktu integrasi berdasarkan frame rate dan kecepatan garis yang diperlukan. Lihat video ini untuk lebih memahami.

Selanjutnya, iluminasi yang dipilih harus mampu menutupi panjang gelombang kamera HSI yang Anda gunakan. Di bawah ini adalah panduan umum untuk membantu Anda dalam pemilihan iluminasi.

Rentang Panjang Gelombang HSIPenerangan
Bisa dilihat· Halogen (bintik atau linier) · LED · Laser superkontinuum
NIR (Inframerah Dekat)
SWIR (Inframerah Gelombang Pendek)· Halogen
MWIR (Medium-Wave Infrared) dan Jangkauan LWIR· Termal

Penting juga untuk memastikan bahwa intensitas dan rentang spektrum iluminasi seragam dengan bayangan minimum atau pantulan spekular.

Kecepatan Gambar dan Waktu Integrasi

Untuk aplikasi penyortiran industri dan pemeriksaan kualitas, kecepatan gambar dan waktu integrasi merupakan faktor penting untuk dipertimbangkan selain dari ukuran sampel dan kecepatan konveyor. Kecepatan gambar mengacu pada jumlah pengukuran per detik, sedangkan waktu integrasi mengacu pada waktu yang dibutuhkan kamera HSI untuk menangkap foton. Penting untuk dicatat bahwa waktu integrasi dikalikan dengan kecepatan gambar harus kurang atau sama dengan 1. Tonton video ini untuk memahami lebih lanjut tentang cara menentukan kecepatan gambar yang benar untuk aplikasi Anda.

Selain faktor-faktor yang disebutkan di atas, faktor-faktor lain seperti efisiensi pengumpulan cahaya, dll., juga harus dipertimbangkan. Lihat panduan ini untuk mempelajari lebih lanjut.

Ingin mengetahui lebih lanjut tentang HSI atau butuh bantuan untuk mengembangkan dan menerapkan HSI untuk aplikasi Anda? Hubungi kami untuk konsultasi gratis sekarang.

Memahami Pencitraan Hiperspektral (HSI)

Untuk mengidentifikasi, mendeteksi, atau menganalisis sifat material dengan lebih baik, pertama-tama kita harus memeriksa bagaimana cahaya berinteraksi dengan material berdasarkan tanda spektralnya. Tanda tangan spektral dari setiap bahan berbeda, seperti sidik jari kami untuk identifikasi uniknya, dan dapat diidentifikasi dari spektrum bahan untuk memahami jumlah cahaya yang dipantulkan, ditransmisikan, atau dipancarkan pada panjang gelombang yang berbeda.

Pencitraan spektral adalah teknik yang menggabungkan pengukuran spektral dengan pencitraan digital. Tidak seperti kamera standar yang menangkap cahaya dalam warna merah, biru, dan hijau dalam spektrum tampak, kamera pencitraan spektral dapat menangkap cahaya dalam panjang gelombang kecil mulai dari UV dan melalui daerah spektrum tampak dan inframerah. Kemampuan spektrum luasnya memungkinkan identifikasi dan pemisahan zat yang tidak dapat dibedakan secara visual dalam bahan dengan mudah berdasarkan warna atau perbedaan kimianya.

Pencitraan spektral dapat dikategorikan menjadi Pencitraan Multispektral (MSI) dan Pencitraan Hiperspektral (HSI). Perbedaan utama antara MSI dan HSI adalah resolusi spektralnya. Kamera HSI mengukur cahaya dalam banyak pita panjang gelombang sempit secara terus-menerus, sementara kamera MSI hanya mengukur sejumlah pita panjang gelombang diskrit.

Kamera HSI menawarkan resolusi spektral yang lebih tinggi yang memungkinkan pengguna membedakan detail yang jauh lebih halus. Dengan kemampuan penginderaan tinggi, kamera HSI ideal untuk berbagai jenis aplikasi. Misalnya, mereka dapat digunakan untuk menyortir makanan atau limbah , mendeteksi dan mengklasifikasikan lesi kulit , atau bahkan menganalisis penyakit tanaman dan stres .

Meskipun ada banyak aplikasi, Sebagian besar kamera HSI hanya digunakan dalam pengaturan laboratorium khusus karena ukuran dan biayanya yang besar. Saat ini, dengan kemajuan teknologi hyperspectral, kamera HSI seperti Specim IQ menjadi jauh lebih terjangkau dan ringkas. Specim IQ adalah kamera HSI pemindaian garis portabel yang cocok untuk penggunaan di laboratorium dan di tempat. Mengoperasikan Specim IQ sederhana dengan kegunaannya yang seperti kamera; Arahkan ke target, tentukan pengaturan pengukuran, dan catat pengukuran.

Tonton video ini untuk mengetahui lebih lanjut tentang Specim IQ. Anda juga dapat melihat video ini untuk mempelajari lebih lanjut tentang HSI.

Untuk informasi dan konsultasi mengenai produk dengan tim ahli dapat menghubungi marketing@almega.co.id.

Pentingnya Pengukuran Kontras Tampilan Dalam Instrumentasi Kokpit

Interior kapsul ruang angkasa modern

Instrumentasi kokpit dalam industri kedirgantaraan telah berkembang selama beberapa dekade terakhir. Di masa lalu, panel kontrol memiliki pengukur lampu latar, sakelar, dan kenop, di mana sekarang Anda lebih cenderung melihat berbagai layar panel datar. Harus ada cahaya dan warna yang konsisten yang dipancarkan dari panel ini untuk mengurangi kelelahan mata, memudahkan interpretasi data, dan mengurangi gangguan. Selain itu, mereka nyaman untuk melihat secara merata di siang hari dan juga di malam hari. Dua pengukuran utama adalah Luminance (ukuran kecerahan) dan Kontras Tampilan (rasio antara terang dan gelap).

Luminance (Brightness) adalah ukuran fotometrik dari intensitas cahaya per satuan luas cahaya yang bergerak dalam arah tertentu. Kecerahan didefinisikan sebagai luminansi komponen paling terang (warna putih) dan diukur dalam candela per meter persegi (cd / m2 = nit) atau foot-lamberts (1fL = 3.426 nits). Biasanya, pencahayaan layar bervariasi dari 100 nits, ditemukan di sebagian besar monitor kantor, hingga sistem proyeksi depan 1000 nits.

Ada jenis unit yang digunakan untuk luminansi. Di kebanyakan negara, satuan luminansi yang paling umum adalah candela / meter persegi (cd / m2). Namun, di A.S., satuan yang paling umum adalah foot-lambert (fL); 1 foot-lambert (fL) sama dengan 1 / π candela / square foot, atau 3.426 cd / m2. Para profesional di industri sering menggunakan istilah nit (nt). 1 unit nit setara dengan 1 cd / m2.

Untuk mengukur luminansi, Anda dapat menggunakan pengukur luminansi seperti LS-150 atau LS-160.

Kontras Tampilan adalah rasio antara warna paling terang (dalam banyak kasus putih) dan warna paling gelap (dalam banyak kasus hitam) yang dapat dihasilkan monitor. Jika tidak ada standar industri dalam mengukur kontras, proses yang diterima secara umum adalah mengukur bagian layar dan mengambil rata-rata atau tertinggi putih dan rata-rata atau terendah hitam dan mengekspresikannya dalam bentuk rasio terang: gelap. Sebagai contoh, jika layar memiliki luminansi terang 150 nits dan luminansi gelap 1 nit, rasio kontras akan ditampilkan sebagai 150: 1.

Dengan performa tinggi yang lebih baru, OLED dengan warna hitam yang lebih gelap kini menghasilkan rasio yang jauh lebih luas. Oleh karena itu, jika monitor dapat menghasilkan 7500 nits dengan layar putih dan 0,010 nits dengan layar hitam, maka akan memiliki rasio kontras 750.000: 1. Kontras yang lebih tinggi menghasilkan gambar yang lebih dalam dengan kualitas layar yang lebih baik, memberikan warna yang lebih kaya yang membuatnya lebih mudah untuk menafsirkan gambar dan data. Layar LCD yang layak mungkin memiliki rasio kontras 1.000: 1. Kontras pada layar OLED jauh lebih tinggi, sekitar 4000: 1, dengan unit ultra-high-end mulai mendekati 1.000.000: 1. Ketika layar OLED menunjukkan warna hitam, pikselnya hampir tidak menghasilkan cahaya sama sekali.

Rasio kontras tampilan adalah salah satu pengukuran kinerja yang paling penting. Selain itu, ini akan menjadi perbedaan paling mencolok antara dua tampilan dalam perbandingan berdampingan.

Untuk mengukur kontras yang terbaik adalah menggunakan spektroradiometer seperti CS-2000 dan CS-2000A. Dengan spektroradiometer kelas atas, Anda dapat mengukur hitam paling gelap hingga pencahayaan super rendah 0,003cd / m2 sehingga memungkinkan pengukuran hingga 1.000.000: 1.

Untuk informasi dan konsultasi mengenai produk dengan tim ahli dapat menghubungi marketing @almega.co.id.

Pengantar Metrologi Untuk Layar

Perangkat tampilan harus disesuaikan dan dikalibrasi untuk memastikan standar kinerja. Dalam metrologi tampilan, CIE 1931 Yxy dan CIE 1976 Yu’v ’adalah ruang warna yang biasa digunakan untuk mendeskripsikan warna dalam angka.

Keseimbangan putih, nada warna, gamma, rasio kontras, keseragaman, dan flicker adalah beberapa parameter performa tampilan umum.

Figure 1 – CIE 1931 Yxy
Figure 2 – CIE 1976 Yu’v’

Keseimbangan Putih

Temperatur warna tampilan harus konsisten di seluruh rentang luminansi. Penyesuaian white balance membantu memastikan konsistensi warna antara perangkat tampilan dan sumber konten. Penyesuaian keseimbangan putih melibatkan penetapan titik putih tampilan dan menyesuaikan keluaran cahaya warna merah, hijau, dan biru primer untuk mereproduksi titik putih dengan benar.

Gamut Warna

Agar perangkat tampilan dapat menampilkan berbagai warna secara akurat, penting untuk mengevaluasi nada warna perangkat tampilan. Gamut warna, yang digambarkan sebagai segitiga, mengekspresikan warna yang dapat direproduksi di dalamnya. Ukuran segitiga ditentukan oleh lokasi warna merah, hijau, dan biru primer yang paling jenuh dalam ruang warna. Semakin besar segitiga, semakin luas rentang warna yang dapat ditampilkannya. Standar nada warna yang umum adalah sRGB, Adobe RGB dan DCI-P3.

Gamma

Layar menggunakan sinyal listrik untuk menghasilkan keluaran optik (luminansi). Respon antara input dan output tidak linier. Peningkatan sinyal input sebesar 50% tidak sama dengan peningkatan pencahayaan 50% tetapi bergantung pada gamma. Agar tampilan menampilkan warna asli di seluruh rentang pencahayaan, koreksi gamma penting. Tingkat pencahayaan pola uji putih yang berkisar dari 0 hingga 100% secara bertahap diukur dan harus netral secara konsisten di seluruh rentang.

Rasio Kontras

Rasio kontras mengacu pada rasio kecerahan maksimum putih di atas hitam paling gelap yang dihasilkan oleh layar. Rasio kontras tinggi diinginkan karena semakin rendah rasio kontras, gambar yang dihasilkan oleh tampilan akan tampak lebih pudar. Rasio kontras ditentukan dengan mengukur luminansi pola uji hitam dan putih. Karena rasio kontras sangat bergantung pada tingkat luminansi pola tergelap, diperlukan instrumen pengujian tampilan dengan sensitivitas luminansi ultra rendah.

Keseragaman

Pencahayaan, kromatisitas, dan keseragaman kontras adalah bagian dari pemeriksaan kesesuaian untuk memastikan keluaran tampilan dari permukaan layar seragam. Array 5, 9, dan 13 poin adalah pengaturan umum untuk memverifikasi keseragaman. Rumusnya adalah sebagai berikut:

Ukur Keseragaman Luminance

Keseragaman = (Lmin / Lmax) x 100%

Non-keseragaman = ((Lmax – Lmin) / Lmax) x 100%

Ukur Keseragaman Kromatisitas

Du’v ’= ((u’1 – u’2) 2 + (v’1 – v’2) 2) 1/2

Contrast Ratio Uniformity dari 5, 9, atau 13 Points Array

Non-keseragaman = ((Cmax – Cmin) / Cmax) x 100%

Flicker

Flicker adalah flutter yang terlihat dalam kecerahan yang dapat dilihat pada perangkat tampilan. Itu terjadi secara berkala dan memiliki efek buruk pada mata pengguna. Metode kontras atau metode JEITA (Japan Electronics and Information Technology Industries Association) digunakan untuk mengukur kedipan.

Metode kontras menggunakan komponen AC dan DC dari luminansi yang diukur dan tidak bergantung pada frekuensi flicker. Flicker dihitung dengan rumus berikut: (Vmax – Vmin) / ((Vmax + Vmin) / 2) x 100%.

Untuk metode JEITA, ini memperhitungkan frekuensi flicker dan juga rasio komponen AC / DC. Kedipan untuk metode ini dihitung dengan rumus sebagai berikut: 10 x log (Px / P0) dB.

Teknologi tampilan berkembang dengan cepat, dan pengujian tampilan bisa jadi rumit dan membingungkan. Lihat video ini untuk mempelajari lebih lanjut tentang dasar-dasar metrologi tampilan. Atau, Anda juga dapat menjelajahi berbagai solusi pengujian tampilan dan cahaya kami untuk mengetahui lebih lanjut.

Konica Minolta dan perusahaan grupnya, Sistem Radiant Vision dan Sistem Instrumen, menawarkan instrumen pengujian tampilan yang komprehensif, mulai dari spektroradiometer dan fotometer pencitraan / kolorimeter hingga penganalisis warna dan pengukur warna pencahayaan, untuk membantu produsen mematuhi standar dan peraturan dengan mudah.

Untuk informasi dan konsultasi mengenai produk dengan tim ahli dapat menghubungi marketing @almega.co.id.